Thermodynamic constraints on
reflectance reciprocity and Kirchhoff’s law
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Introduction

Contrary to common belief, neither reciprocity of the bidirectional reflectance distribution function
(BRDF) nor the directional form of Kirchhoff’s electromagnetic radiation law can be demonstrated on the
basis of energy conservation. The BRDF is generally considered reciprocal as an extension of Helmholtz
reciprocity, but Helmholtz reciprocity does not always hold. We describe the flaw in a thermodynamic
demonstration of reciprocity that uses an enclosure calculation. Some conclusions can be drawn from
the enclosure calculation, but reciprocity requires more restrictive conditions. We conclude that, al-
though they can be violated, reciprocity and the directional form of Kirchhoff’s law generally hold because
of the quantum-mechanical principle of time-reversal invariance, which applies to most materials.
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tion function (BRDF). For our application, reciproc-

Optical reflectance reciprocity is a property of a ma-
terial or a structure. In particular, it applies when a
source of light is reflected off a material and detected.
If reciprocity holds for the material, the detector re-
sponse is the same when the source and the detector
positions are switched. The validity of reciprocity is
of interest, for example, in statistical physics, radia-
tive heat transfer, and radiometry. In these disci-
plines, it is generally accepted that reciprocity holds
for a large class of materials and systems. This pa-
per is the result of one of us (Li) questioning the
enclosure calculation argument for reciprocity in a
popular heat transfer text by Siegel and Howell.?
Such thermodynamic arguments appear to be flawed,
and as a result we sought to demonstrate the flaw in
the reasoning and to determine under what condi-
tions reciprocity should hold. In radiometry, reci-
procity is manifested most fundamentally as
reciprocity of the bidirectional reflectance distribu-

When this research was performed, W. C. Snyder and Z. Wan
were with the Institute for Computational Earth Systems Science,
University of California, Santa Barbara, California 93106. W. C.
Snyder is with GDE Systems, Inc., MZ 6100G, P.O. Box 509008,
San Diego, California 92150-9008. X. Li is with the Center for
Remote Sensing, Boston University, 725 Commonwealth Avenue,
Boston, Massachusetts 02215.

Received 21 July 1997; revised manuscript received 20 January
1998.

0003-6935/98,/03464-07$15.00/0

© 1998 Optical Society of America

3464 APPLIED OPTICS / Vol. 37, No. 16 / 1 June 1998

ity is important for BRDF measurements? and for
BRDF models.? The issue of whether reciprocity
holds also has consequences for other optical proper-
ties of a material, such as the various relations
among directional and hemispherical reflectivity,
emissivity, and absorptivity. Of particular interest
is the equivalence of the directional absorptivity and
the directional emissivity, which is the directional
form of Kirchhoff’s law. These issues are developed
furthest in the field of statistical physics, so it is
useful to connect some of the results in that field to
radiometry, which is our main concern here.

The BRDF, defined by Nicodemus et al.,* is a
fundamental characterization of material reflec-
tance. Further, under normal conditions, it is a
property only of the material, and it is independent
of the material temperature and the incident radi-
ation field. The BRDF is defined for infinitesimal
solid angles, but it can be measured as an average
value over small, finite angles. Other measurable
optical properties may be obtained by integration of
the BRDF over larger incident and reflected solid
angles. These properties include biconical reflec-
tance factors and directional emissivities and ab-
sorptivities. In fact, many such properties are
defined in terms of the BRDF. For monochromatic
light with a specific polarization, the BRDF is a
four-dimensional function of the incident and the
reflected zenith and azimuth angles. Usually, the
BRDF is taken to be reciprocal, meaning that the



value is the same when the incident and the re-
flected angles are switched:

£(0;, s 0;, d)j) = f(ej, bj; 05, b;). (D

Here the first two angles correspond to the incident
direction and the last two to the reflected direction.
The basis for this relation is an extension to diffuse
reflection of the Helmholtz optical reciprocity theo-
rem.> Helmholtz stated his theorem of reciprocity in
1874. A corrected version of an early translation to
English is provided by Clarke and Parry® in an ex-
perimental treatment of the issue for reflectometry.
The statement asserts that when the behavior of light
can be approximated as a scalar wave, there is an
equal output angular flux density for a given input
flux density when the direction of propagation is
reversed. The asymmetrical properties of the
magneto-optical effect were discovered earlier by
Faraday, in 1845, and Helmholtz excluded systems
with this behavior.” Such systems violate Helm-
holtz reciprocity because they are not invariant under
time reversal.

In the 1930’s, L. Onsager showed that with irre-
versible systems, such as scattering media, the
quantum-mechanical reversibility at the microscopic
scale can lead to macroscopic reciprocity relations in
a variety of situations. The Onsager reciprocity re-
lations may be applied to support optical reciprocity.
Microscopic reversibility means that at atomic scales,
for a particular geometry, wavelength, and polariza-
tion state, the probability of an interaction is the
same as that of its reverse.® For an unpolarized
source and a detector that is insensitive to polariza-
tion, this microscopic time-reversal symmetry means
that the intensity registered by the detector that is
reflected off some physical system in the geometric
far field is the same when the source and the detector
positions are switched.®

It is straightforward to show that the reciprocity of
the detected intensity in that situation is equivalent
to the reciprocity of the BRDF when the system in
question is an element of a flat surface or of a struc-
tured surface that is measured under appropriate
averaging conditions. We consider structured sur-
faces that can have both transmitting and opaque-
reflecting elements in an arrangement that, at some
scale and measurement distance, is equivalent to a
flat surface for the purposes of defining the optical
properties. In any case, the system must be invari-
ant under time reversal for this reciprocity to apply.
But in fact it is easy to devise a system that is not
invariant under time reversal. One such surface
has elements that are Faraday isolators. The Fara-
day isolator is a dielectric in a strong magnetic field
that rotates polarization asymmetrically for the two
directions of travel. When this is placed between
polarizers, the transmission is asymmetrical. Time-
reversal symmetry dictates that the field be reversed
for the opposite direction of travel, and if it is not,
reciprocity is violated. With a Faraday isolator, if
not a flat surface, then at least a structured surface

that violates BRDF reciprocity at some particular
pair of angles can be constructed.10-11

Faraday rotation is a weak effect, even for optimal
materials in a strong magnetic field. In fact, in the
absence of a strong field, time-reversal symmetry and
thus reciprocity apply to most materials. Measure-
ment error is probably the dominant cause of nonre-
ciprocal behavior in experiments. For instance, one
report of measured reciprocity failure with rough-
ened glass and aluminum?? was later discredited as
caused by uncontrolled factors.13.14

Although it appears that the assumption of micro-
scopic time reversal is the most general basis for
reciprocity, there are special cases for which it may be
shown to hold without invoking time reversal. For
instance, if the material is isotropic, nonconducting,
and nonmagnetic, it is straightforward to show by the
Fresnel equations that the reflectance and the trans-
mission at an interface are reciprocal. Reciprocity is
also supported by the Fresnel-Kirchhoff diffraction
formula,’® and another study shows that the Lorentz
theorem leads to reciprocal electromagnetic scatter-
ing by obstacles.16 In fact, for structures of opaque
and transmitting materials that are reciprocal, it
may be shown that the average BRDF of the struc-
ture is reciprocal.’® Additional cases in which reci-
procity can be shown to apply without invoking time
reversal are discussed by Shelankov and Pikus.®

On the other hand, it appears that reciprocity can-
not be derived on the basis of the conservation of
energy, as it is applied in an enclosure calculation.
To begin with, this is evident from the fact that rec-
iprocity can be violated, yet there are no known vio-
lations of the thermodynamic laws. We will
demonstrate analytically that maintaining the equi-
librium conditions in an enclosure does not require
BRDF reciprocity, although this has been claimed in
the literature. For example, Nicodemus!?-18 ques-
tioned Bauer’s version of this argument?® but did not
demonstrate the flaw in Bauer’s reasoning. Our
contribution is to demonstrate the flaw in a contem-
porary example of the erroneous argument put forth
in Siegel and Howell’s text.?

2. Flawed Thermodynamic Argument

The supposed thermodynamic argument employs an
enclosure calculation. This is a common method for
demonstrating some conservation-of-energy proper-
ties, especially in the field of radiative heat transfer.
The enclosure has perfectly black, absorbing inside
walls, is isolated from the surroundings, and is in
equilibrium. Under these conditions, it can be
shown that if the statistical fluctuations are time
averaged, the radiation inside the enclosure is isotro-
pic, and it can also be shown that the temperature of
all elements is the same.

For the purposes of this discussion, there is no loss
in generality in shaping the black enclosure as a unit
hemisphere with a black bottom plane, and no loss in
generality by taking an element of interest, dA, to be
at the center of the bottom plane. This familiar ar-
rangement is shown in Fig. 1. This unit hemisphere
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Fig. 1. Geometry definitions for the BRDF on the unit hemi-
sphere.

enclosure simplifies the subtended solid angles and
distances involved in the calculations. Further, a
radiating element on the unit hemisphere, dA4;, and
the corresponding element of the solid angle are re-
lated by

do_1_, 2)
Finally, other elements on the bottom plane have zero
projected area with respect to the element of interest
at the center, and so they do not appear in the cal-
culations, but they do contribute to the isotropic ra-
diation field in the enclosure.

In this isothermal enclosure, the time-averaged net
heat flow into and out of any element must total zero.
Otherwise the nonzero net flow would change the
temperature of the element. Here the radiant flux is
the only mechanism for heat flow. In addition to the
zero total flux, it turns out that for an all-black en-
closure, the flux exchange between any two elements
dA; and dA; on the enclosure surface is zero. This
flux comprises two parts. First, the reflected flux
exchange between two elements is zero. This is be-
cause there are no reflections when there are only
black elements in the enclosure. Second, the direct
flux exchange between two elements is zero. This is
true for any two black elements at the same temper-
ature and at any orientation because of a straightfor-
ward radiometric property called shape factor
reciprocity.2® This is not related to reflectance reci-
procity. Thus, in summary, for the all-black enclo-
sure, the net flux at one element must be zero and the
net exchange between any two elements is zero.

Now, the erroneous argument with a nonblack el-
ement goes as follows: Replace the black element at
dA, with a nonblack element that has an arbitrary
BRDF that is possibly not reciprocal. It is argued
that, because this new nonblack element does not
influence the direct exchange between the two black
elements that we already had, dA; and dA;, this ex-
change must still be zero, which we said was true
because of shape factor reciprocity. Then, it is ar-
gued falsely that, because the total exchange between
dA; and dA; must still be zero to maintain equilib-
rium, the reflected exchange must also be zero. Ifit
were determined that the reflected exchange is, in
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fact, zero, it can be shown that reciprocity must hold.
The total radiant exchange between two black ele-
ments through an arbitrary nonblack element, how-
ever, is no longer necessarily just the direct flux and
the reflected flux. The flux from the nonblack ele-
ment towards one of the black elements must still be
the same as the isotropic flux in the all-black enclo-
sure, but this flux can consist of flux reflected from
any part of the enclosure, as well as flux absorbed
from any part of the enclosure and then emitted.
This leads to a myriad of possibilities for a nonrecip-
rocal BRDF that satisfy the equilibrium require-
ments. In Section 3, we present one of these as an
example.

3. Reciprocity Violation

Recall that no matter what the BRDF of dA,, all
elements including dA, must be at the same temper-
ature, and the net flux out of any element must be
zero. Consider the exchange between any black el-
ement, dA;, and the nonblack element of interest,
dA; We have said that the direct flux exchange be-
tween two black elements is zero by shape factor
reciprocity. So we can say that, because both the
summed net flux exchange between a given black
element, dA;, and all other black elements is zero and
the net flux out of dA; is zero, the flux exchange
between dA; and dA, must also be zero. In other
words, the nonblack element at dA, must have the
same spectral radiance in all directions as a black
element. From this we can equate the flux between
dA; and dA; in opposite directions. All of the flux
from dA; is emitted, but some of the flux returning
from dA; is emitted and some is reflected from the
hemisphere.

The flux ® in terms of radiance L from an element
is

d*® = LdwdA cos 6. (3)

Here dw is the elemental solid angle subtended by a
source with radiance L, and 6 is the zenith angle with
respect to the normal of the receiving area element
dA. The BRDF may be defined as the ratio of the
radiance in direction j to the irradiance in the plane
of the element from the direction i:

dL,;
f(6;, d;; eja 491) = TE 4)

For the flux from the center nonblack element, dA; in
the direction of one of the black elements, dA,, there
are two parts, the flux reflected from the hemisphere
and the flux emitted thermally. The flux reflected

by dA,from any black element, dA;, on the unit hemi-
sphere that arrives at dA; is given by

dgq) = f(ei, d)” ej, ¢J)dAf COSs ejdijLbdAL COSs ei. (5)

Here L, is the blackbody radiance, which has a fixed
value for a single temperature and wavelength.
This flux may be integrated over all elements on the



hemisphere to get the total reflected portion toward
dA:
J

d*® = J f (8, i 6, b)dAs cos O,dA Ly, (6)
2m

for which dA, cos 6, becomes the projected solid angle
element d(); = cos 6, sin 0,d6,dd,. The flux emitted
thermally by dA, toward dA; is simply

d2q) = E(Oj, d)J)LbdAfdAJ Cos Bj. (7

The total flux from dA,to any element dA; is thus the
sum,

a0 = f (01 i 05, b)dA cos O AL,
2w

+ £(8), &;) L,dAdA,; cos 6;. (8)

Straightforward radiometry gives the total flux from
a black element dA; of blackbody radiance L, that
arrives at the nonblack element dA,. It is

d*® = L,dAdA; cos 6, 9)

We have said that Egs. (8) and (9) must be equal
between the nonblack element and any black ele-
ment. This holds true between the nonblack ele-
ment and each of the two black elements also, which
is the basis of the next part of the derivation. Using
this fact, we present a special case in which the BRDF
is not reciprocal but in which the thermodynamic
enclosure calculation axioms still hold. Note that
there are many possibilities, and this is just a simple
case to illustrate the preceding discussion.

For brevity, let the BRDF £(6;, ¢;; 0;, ¢,) be denoted
f(i,j) and the emissivity €(6;, ;) be €(j). Next, con-
vert the area elements to small finite angles. Ifboth
Egs. (8) and (9) are integrated over some small finite
solid angle ), and we cancel L,dA., we have for our
thermodynamic balance between dA, and the area
subtended by a small solid angle ),

Q, Qq V2m Q

Similarly, for some other small solid angle in another
direction (),

Qp Ob V2w b

For convenience, simplify the geometry by letting (),
and (), have an arbitrary shape but be such that

e(j)dQ,. (10)
e(j)dQ,. (11)

J aqQ, = f aqQ, = k, (12)
Q [

a

and the thermodynamic equality constraint becomes

f f £, )dQ,dQ; + .[ e(7)de); =
Qg V2m Q,

a a

J f @, j)dQ.dQ; + f
b Vor b

Our aim is to show that this can be satisfied with
nonreciprocal BRDF. Because integration is linear,
we can separate the reflection term into two parts.
For the left-hand side,

e(j)dQ,. (13)

f J. G, /)dQ,dQy,; =

j U f(i,j)dﬂﬁf

Here the domain of integration ,\27 denotes the
solid angle region that is the complement of the do-
main (), with respect to the hemisphere. The sym-
bol is borrowed from set notation and is not division
or subtraction. For convenience, we set the inte-
grals over these larger domains to be equal for the
example,

G, Hd0; |dQ,.  14)

f J (@, j)dQ,dy; Ef j f(@,7)dQdQ;. (15)
Qq YV OQp\2m Qp VO, \ 27

We then have a relation between emissivity and
BRDF that must hold for the two solid angles,

J J. £, ))dQ.dQ; + f £(j)dQ),; =

a

f f f(i,j)dﬂidﬂﬁf g(j)dQ;. (16)
[e7) Qp

a

Next, we took the BRDF and the emissivity to be
constant inside the small solid angles ), and ), so
that we could bring the BRDF and the emissivity
outside the integrals. Note that the difference in the
sequence of integration in the BRDF terms in the
preceding expression is the reason for the different
order of the arguments in the BRDF terms in what
follows.

f(b,a).[ dQJf in+s(a).[ dqQ, =

Qq a

f(a, b) j

QO

do, f dQ, + £(b) f o, (17
b Qq Qp

So finally, if the BRDF were not reciprocal for this
pair of angles, we could still satisfy the thermody-
namic equilibrium requirements, but we must have
the following relation between the BRDF disparity

1 June 1998 / Vol. 37, No. 16 / APPLIED OPTICS 3467



Fig. 2. Form of the Faraday isolator. The S polarization is ro-
tated to line up with the S’ polarization for right-to-left propaga-
tion. For left-to-right propagation, the S’ is rotated to the P
polarization and is blocked.

and the directional emissivity disparity for average
values over the regions a and b,

s(ea; d)a) - 8(eb7 d)b) = k[f(ew d)a; eb’ d)b)
- f(eba d)b: eaa d)a)]' (18)

Recall that % is a geometric constant that was defined
in Eq. (12). In summary, we began with the ther-
modynamic axioms for an isothermal enclosure and
concluded that there can be a disparity in the BRDF
between the two directions when there is a commen-
surate difference in the angular emissivity.

It fact, in an isothermal enclosure, a Faraday iso-
lator with absorbing polarizers would violate reci-
procity in this manner and the isotropic radiation
field would be maintained. Figure 2 depicts an ideal
isolator that consists of a dielectric element in a mag-
netic field. We take the isolator to be fully transmit-
ting and to have a field strength such that the
polarization of light is rotated 45°, but asymmetri-
cally, in the direction 3, regardless of the direction of
travel. The element is sandwiched between two
ideal linear polarizers rotated to a relative angle of
45°. This means that half the light travels from
right to left, but no light is transmitted from left to
right. A polarizing filter can absorb or reflect the
blocked polarization. For this example, let us take
the polarizers to absorb the blocked polarization state
fully. The emissivity for these elements is therefore
unity for the blocked polarization and zero for the
transmitted polarization.

Under these conditions it is easy to calculate the
balance of emitted, absorbed, and reflected light for a
reflecting configuration in equilibrium in an isotropic
radiation field. Figure 3 illustrates this result.
The lower boundary is a perfect specular reflector.
The straight arrows represent light from the cavity
walls that has not been absorbed by the isolator, and
the wavy arrows are light radiated thermally from
the isolator. In traveling from & to a, the
S-polarization component from the cavity wall is
transmitted and rotated to S’. The P polarization is
absorbed by the first polarizer along that direction of
travel. On the other hand, in traveling from a to b,
both the S’- and P’-polarization components from the
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Fig. 3. Structured system that violates reciprocity and the direc-
tional form of Kirchhoff’s law. Straight arrows show radiation
from the cavity walls that has not been absorbed by the isolator.
The wavy arrows show the radiation emitted by the isolator. The
S polarization from the b branch reflects without being absorbed
with an S’ polarization toward the a branch. The P polarization
from the b branch and both the S’ and P’ polarizations from the a
branch are absorbed by the isolator.

cavity wall are absorbed by the isolator. The P’ com-
ponent is absorbed by the first polarizer, and the S’
component is absorbed by the second polarizer in the
a to b direction. Not only does this configuration
violate reciprocity for the S polarization, but also both
branches violate the directional form of Kirchhoff’s
law.

4. Directional Kirchhoff’s Law Violation

Returning to the equilibrium condition that Eq. (8) is
equal to Eq. (9), one can perform a calculation for the
enclosure in this configuration that is related to the
directional form of Kirchhoff’s law. This has been
done in many studies, but it is worth reviewing in the
present context. Equating Egs. (8) and (9) gives

€6, b)) =1~ f £(0;, db;; 0;, b)dC,. (19)

Similarly, we can show that

O‘(eja ¢j) =1- J f(ej’ bj; 05, b,)dC),. (20)

2w

When the argument presented by Nicodemus7 is fol-
lowed, Eq. (19) shows that from only a thermody-
namic basis, the emissivity toward a direction is the
complement of the hemispherical-directional reflec-
tance toward that direction. Thus we have shown
that €(6,, ;) = 1 — p(2m; 0;, $;), where 27 denotes
integration over the hemisphere. But this is not the
widely used relation for the measurement of emissiv-
ity by an integrating sphere, which is based on
directional-hemispherical reflectance, €(0;, ¢;) = 1 —
p(0, d;; 2m). That relation is derived when one com-
bines the relation for the absorptivity [Eq. (20)] and a
connection between the directional emissivity and ab-
sorptivity that is the more powerful form of Kirch-
hoff’s law,

€(0;, ) = a(0;, b)), (21)



which from Eqgs. (19) and (20) requires that

J. £(6;, b 0;, d)j)in = f f(ej’ d)j; 0;, d,)d€. (22)

But we cannot say that these integrals are equal on
the basis of thermodynamic laws. From Eq. (22) we
see that Eq. (21) is in fact true if the BRDF is recip-
rocal, which applies for the majority of materials.
But, based on our Faraday isolator example in Fig. 3,
€0;, ;) = (0, (bj) might not hold when the BRDF is
not remprocai in other words, when time-reversal
invariance does not apply. On one side of the sur-
face, the structure is absorbing both polarizations
and emitting only one of them, the other polarization
is compensated by reflected light in an equilibrium
situation. So, as with reciprocity, the directional
form of Kirchhoff’s law can be violated. It is not
demonstrable from conservation-of-energy consider-
ations. On the other hand, reciprocity holds for a
general class of materials that are invariant under
time reversal, so we have shown that indeed £(6;, ;)
= a(0;, ;) also holds for these materials.

5. Discussion

So, to be precise, for materials that are invariant
under time reversal we have for the BRDF the recip-
rocal relation

O\, @; 60;, b 0;, (I)_]) =f(\, ¢; 0;, d)j; 0, d;), (23)

where \ is the wavelength and ¢ represents the cor-
responding state of polarization. The BRDF is a
property of the material only and the reciprocity re-
lation holds under normal conditions with no restric-
tions on the illumination. If time reversal does not
hold, reciprocity can be violated. In addition, we
have assumed that the source and the detector are in
the same medium. Although both reflection and
transmission are reciprocal at the interface of non-
conducting media, a transmission reciprocity viola-
tion can occur at the interface when at least one of the
materials has a complex index of refraction, such as
that for a metal.1?

As for the directional form of Kirchhoff’s law, as-
suming reciprocity and using some results from an
enclosure calculation, we determined that

8()\, P; eja d)]) = OL()\’ ®; ej’ d)j) (24)

Although we derived this relation from the isother-
mal enclosure calculation, the directional emissivity
and absorptivity are properties of the material. Al-
though equilibrium is not required, there are some
caveats for this expression that are explored exten-
sively by Baltes.2! First, in the regime in which
there is significant stimulated emission, it must be
treated as negative absorption. Otherwise, errors of
more than 1% occur for A > 3150 K pm. Second,
the system need not be in equilibrium with the sur-
roundings, but its energy states must obey the equi-
librium distribution. And third, emissivity is
defined only when the surface or the structure has a

unique temperature. For structures, this may not
be the case, and the law can appear to be violated.22

There can also be apparent violations of these op-
tical relations when they are averaged over wave-
length or angle. Usually one wants to compute some
band-averaged or angle-averaged radiometric quan-
tity. It is best to do this computation by integration
of the material properties together with the spectral,
directional illumination. On the other hand, some-
times a derived optical property of a material such as
the average reflectance across the solar spectrum, is
more convenient for measurements or calculations.
Derived properties involve the integration of spectral
and angular properties. It is easy to show that these
averaged properties and their relations can depend
on the nature of the illuminating radiation. This is
simply because the averaged property is the integral
of an intrinsic property weighted by some assumed
illumination conditions. For instance, integration of
the directional absorptivity over the hemisphere (and
the polarization) assumes that the absorptivity or the
illumination or both are constant with angle. A ta-
ble of the various directional and spectral combina-
tions derived from Eq. (24) and the conditions of their
applicability is presented by Grum and Becherer2?
and also by Siegel and Howell.! Relations of derived
properties for which these types of restrictions apply
include the spectral, hemispherical form of Kirch-
hoff’s law, a(\) = €(\), and the spectral, hemispheri-
cal conservation-of-energy law, a(\) + T(\) + p(\) = 1.
Such laws hold only under the external conditions for
which the integration over angle was valid.

6. Conclusions

Apparent violations of reciprocity and of Kirchhoff’s
law are sometimes seen in practice. For instance, in
the laboratory, this is true for BRDF measurements
of unusual materials.2¢ [A. Springsteen, Labsphere,
Inc., North Sutton, N.H. (personal communication)].
Such materials include effects paints, such as paints
with metal flakes and layered optical materials.
There are polarization effects and multiple reflec-
tions in such materials that may cause a critical de-
pendence on some aspect of the measurement system.
On the other hand, because there is no basis on fun-
damental thermodynamic laws, there is always the
possibility of a nontrivial reciprocity violation.

In the field, radiometry and BRDF are applied ex-
tensively in remote sensing, and reciprocity violation is
observed in measurements of natural land surfaces.
Disparities of more than 10% occur in forest canopy
data from Kimes2? and from Deering?é in which solar
radiation is used for the source. These disparities are
caused by various uncontrolled and uncorrected fac-
tors. The measurement, and even the definition of
the BRDF for structures, depends on several geometric
factors.1® For instance, the surface sampling spot
size must be large enough to average any variations,
and the parallax and the edge effects of the spot must
be negligible. Additional factors for remote-sensing
field measurements include atmospheric effects, dif-

1 June 1998 / Vol. 37, No. 16 / APPLIED OPTICS 3469



fuse downwelling illumination, and temporal changes
between measurements.2?

In conclusion, neither the reciprocity of the BRDF
nor the equivalence of the directional absorptivity
and emissivity can be demonstrated by the conserva-
tion of energy in a thermodynamic enclosure calcula-
tion. On the other hand, these relations hold if the
material or the structure is invariant under time re-
versal, which is usually true. So, for most materials,
and in the absence of a strong magnetic field, it ap-
pears safe to assume the validity of BRDF reciprocity
and the directional form of Kirchhoff’s law.
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